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Analytical representation of the adiabatic equation
for detonation products based on statistical
mechanics and intermolecular forces

By W. Byers BrowN
Chemistry Department, University of Manchester, Manchester M13 9PL, UK.
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A new mathematical form is presented for the equation of state of a detonation
product fluid along the adiabat describing its expansion from the Chapman—Jouguet
state. The basic ansatz is a rational function form for the adiabatic gamma coefficient
in terms of the reduced density V,;/V as variable, from which the pressure can be
derived analytically, and the internal energy by quadrature. Rational approximants
of arbitrary order can be fitted by linear least squares to results from an ideal
detonation code involving a fundamental equation of state based on statistical
mechanics and intermolecular forces. The approximants can be checked for accuracy,
and used in hydrodynamic codes. The method is illustrated by application to results
for pentaerythritol tetranitrate, and the new equations are compared with the
Jones-Wilkins—Lee equation.
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There are now in existence quite a few sophisticated ideal detonation codes
incorporating an equation of state (ros) for detonation products based on statistical
mechanics and intermolecular forces (Chirat & Pittion-Rossillon 1981; Ree 1984;
Freeman et al. 1991). They are being increasingly used by researchers pursuing
fundamental studies in condensed phase detonation. However, to fit experimental
detonation results from cylinder and other tests for the expansion adiabat,
comparatively simple equations relating the pressure P and the internal energy K
(and possibly the temperature 7') to the volume V, in which the complex chemistry
of the detonation products is implicit, are almost mandatory. The assumption behind
such equations is that all the chemical reactions are at equilibrium. A similar but
more general reactive adiabatic (non-equilibrium) equation, which contains in
addition one or more extent-of-reaction parameters A, is required to model non-ideal
detonation in finite element hydrodynamic codes.

By contrast with the sophisticated and fundamental Eos used in modern
detonation codes, the equilibrium and reactive adiabatic equations most commonly
used are either empirical (e.g. Jones—Wilkins—Lee (JWL) equation) or simplistic (e.g.
polytropic Eos). In addition they are usually inconsistent with the fundamental Eos
(e.g. assume constant Gruneisen gamma or constant heat capacity), and are
relatively inflexible. There is clearly a need for both reactive and equilibrium
(isentropic) adiabatic equations which are consistent with the ideal detonation codes.
The easiest way to achieve this goal is to devise appropriate flexible forms for PVE
and PVEA equations and to fit them to detonation code results.

The aim of this paper is to propose a particular form for the analytical
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346 W. Byers Broun

representation of the equilibrium adiabatic expansion results from ideal detonation
codes, and to present a procedure for generating approximants of any desired
accuracy.

2. Thermodynamics

An equilibrium adiabatic expansion equation is essentially an equation for the
pressure P of a fluid mixture as a function of the specific volume V (i.e. volume per
unit mass) for constant specific entropy S, since an equilibrium adiabat is also an

isentrope ; that is, P=PWV) for 8= const. (2.1)

A quantity of great importance in describing ideal detonation and adiabatic
expansion is the adiabatic gamma coefficient defined by

Iy=—@logP/dlogV)s, (2.2)

where the derivative is to be taken under the conditions of chemical (and phase)
equilibrium, and constant mass of each chemical element present (gibbsian
derivative). In view of its experimental and theoretical importance, in many ways
the variation of I'y with volume V makes a better starting point for developing an
adiabatic equation than the pressure P itself. I’y varies, often monotonically, from
the value y,; at the Chapman-Jouguet (CJ) state of around 3, to the perfect gas value
viq of around 1.3 at infinite volume.

A more convenient variable in a formal mathematical sense than V or V/V,; is
x = log (V/V,;), which varies from zero at the CJ state to infinity. If the adiabatic
gamma is known as a function of « then the pressure P is given by

P =P, exp[—Jx I'y(2') dx’]. (2.3)

0

The specific internal energy £ along the adiabat is also of interest. The fundamental
differential equation of thermodynamics for a fixed (unit) mass of a single phase fluid
mixture is

S
dE =TdS—PdV+ ¥ u, dn, (2.4)

=1

where 4, is the chemical potential and n; the molar mass of the ith species. However,
the condition for chemical equilibrium between all the species present is precisely
that the summation term always vanishes, so that the differential equation reduces

to dE = T dS—P dV, (2.5)
and it follows that the pressure is given by
P=—QE/V)s. (2.6)

Therefore by integration from the CJ state at constant entropy the internal energy
change is v
E—E =—j Pdv,

Vej

TP
or E—E  =—(PV), J I~)——e" da’. (2.7)
0 " cj
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Thus the internal energy along the adiabat can be related directly to the adiabatic
gamma coefficient as a function of x by

E—FE, z z
““—_!(PV)C. =— . exp{—f0 [Fs(x”)—l]dx”}dx’. (2.8)
¢j

Note that if I'g is constant, which is true for a polytropic perfect gas, defined as one
for which the heat capacity €, is a constant, independent of temperature, then we
get the simple form familiar to detonation theorists

g _PV=(EV),

. , 2.9
9T T &9

where I’y is the ratio of the heat capacities Cp/C,,.
Another important thermodynamic quantity occurring in the equations of motion
describing detonation is the Gruneisen gamma coefficient defined by

I'c=—(0logT/0logV)g, (2.10)

where, again, the derivative is to be taken under the conditions of chemical and phase
equilibrium, and constant mass of each chemical element present. If I'; is known as
a function of & = log (V/V,;) then the temperature can be derived by integration by
analogy with (2.3), namely

Zz
T=T, exp[—f FG(x’)dx’]. (2.11)
0
Knowledge of P, T'and £ as functions of density along the expansion adiabat gives
a fairly comprehensive picture of the thermodynamic behaviour of the detonation
fluid.

3. Rational representation

This paper is based on the following ansatz for the adiabatic gamma coefficient :

I =S ap| S b, (3.1)
i=0 7=0
that is, the ratio of two polynomials of equal degree N = 1,2, 3, etc., in the reduced
density p = V,;/V, containing 2N+ 2 coefficients. One coefficient, say b, is arbitrary
and set equal to unity: b, = 1. In addition, for p = 0 we have a, = ;4 b,, Where y;,
is the perfect gas value of I'y. The essential dependence of I'g on p is thus determined
by 2N coefficients.

Given a set of pairs of values p,, v, = I's(p,) for k=1,2,3,..., M from an ideal
detonation code (or experiment), the @ and b coefficients can be found by solving the
linear equations

N-1
bo(Via= V) + (@;=b; Vi) Pkt an PR = ViPi > (3.2)
i=1
for k=1,2,8,..., M, provided M > 2N. If M > 2N then a singular value decom-
position technique, which is equivalent to the linear least squares method, can be
used to get the best values of the coefficients.

Phil. Trans. R. Soc. Lond. A (1992)
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348 W. Byers Brown

The rational form (3.1) is not mathematically suitable in general for deriving the
adiabatic equation proper for the pressure by integration. For this purpose it can be
transformed by factorizing the denominator polynomial B(p) in (3.1)

N
Blp) =11 (p+4)). (3.3)
j=1

where the § parameters are the negatives of the roots of B(p), that is

=B)=0 (j=12,..,N). (3.4)
Then I’y can be partial fractioned to

N
Tslp) = yiatp 2200 (3.5)

+ﬂ,

where the as are as yet unknown. To find the a parameters, substitute for I'y from
(3.1) into (3.5) to get

N
A(p) = 714 Bp)+p Z a; By(p), (3.6)
=1

where A(p) is the numerator polynomial in (3.1) and
Bi(p) = B(p)/(p+B) (i=1,2,..,N). (3.7)
Put p = — g, to get N

=B) == Z o, Bi(— ). (3.8)
i=1
Now B,(—f;) vanishes unless i = j, so
—B) = =By By(— ). (3.9)
But by differentiating (3.3) the derivative B'(p) of B(p) can be written

N
B'(p) = Z By(p), (3.10)
so B'(—f;) = B;(—f;). Hence

ay=—A(=4)/8;B(=f;) (j=12,....,DN). (3.11)

Note that if the fs are real they must be positive, but they may also be complex,
when they occur in conjugate pairs, thus ensuring the reality of I'y. By substituting
(3.5) into (2.3) we get for the adiabatic pressure equation

a p+/3j>°‘]
P=P,pn H(Hﬂj (3.12)
E—E j - <¢+ﬂj) q

= — a~ . 3.13
(PV)CJ P ' ;I—[l 1+ﬂ] " ( )

For N = 1 the integral can be written in terms of the incomplete beta function. In the
general case it must be evaluated by numerical integration, but since the integrand
is well-behaved everywhere, this can be carried out easily, quickly and accurately
using standard algorithms.

Phil. Trans. R. Soc. Lond. A (1992)
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The same type of rational approximation can be used for the Gruneisen gamma
coefficient, Iy, defined by (2.10), that is

N M
I'o(p) =% ijj/z dj/’j- (3.14)
1=0 =0
The development is exactly the same as for I'g, and leads to
N gj
Lo(p) = Via—=1+p X ——, (3.15
G a Pj=1p+77j )

since the perfect gas value of Iy is ;4 — 1, where the  parameters are the negatives
of the roots of the denominator D(p) of (3.14), and the £ parameters are given by the
analogues of (3.11). This equation can be integrated analytically to yield the
following analogue of (3.12) for the temperature along the adiabat:

N +17 &
T =17 . pria~1l B____.l . .

4. Application to PETN

Figure 1 is a plot of the adiabatic gamma coefficient I'g as a function of the reduced
volume V/V,; along the expansion adiabat for the ideal detonation of pentaerythritol
tetranitrate (PETN) at an initial density of 1 g cm™3. The points are calculated from
the ideal detonation code called IDeX developed for ICI ple (Freeman et al. 1991)
which is based on an analytical representation of the statistical thermodynamic
equation of state for mixtures of molecules interacting with the Buckingham
exponential-a:6 potential (Byers Brown 1987 ; Byers Brown & Horton 1988; Byers
Brown & Braithwaite 1989). The solid line is the rational least squares fit to the
M = 50 points for N = 2. The values of the @ and b coefficients are given in table 1;
note that y;q = ao/b, = 1.220.

In figure 2 the IDeX results for log (P/P,;) are plotted against V/V,; and compared
with equation (3.12) for N = 2; that is,

_ " pt+BN\ (Pt B\
P=Pur <1+/>’1) (Hﬂi) ’ “1)

where p = V,;/V. In this case the coefficients a and f turn out to be complex
conjugate pairs, and calculations can be carried out either by using complex
arithmetic, or by using the real form

log (P/Py;) = viq log p+35 (ay,—7viq) log [B(p)/B(1)]

(20, —bl]()a2 +7ia)] [amtan (2/0_;%) _ arctan (gig.’_l)] . (4.2)

where here
D = +/(4b,—b?). (4.3)

The agreement is again very satisfactory, with a root mean square (rmMs) deviation
of 4x 1074,

Figure 3 shows a similar graph for the reduced internal energy quantity of §2,
calculated from (3.13) by the alternative extended Simpson’s rule. In this case the

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. The adiabatic gamma coefficient for PETN (initial density 1 g cm™) as a function of
volume along the expansion adiabat. Squares are calculated from an ideal detonation code. The line
is the rational fit of order 2.

Figure 2. Log of the reduced pressure P/P, for PETN (initial density 1 g em™) as a function of
volume. Squares are calculated from an ideal detonation code. The line is derived from the rational
fit of order 2.

Figure 3. A reduced internal energy for PETN (initial density 1 g cm™) as a function of volume.
Squares are calculated from an ideal detonation code. The line is derived from the rational fit of
order 2.

Figure 4. The Gruneisen gamma coefficient for PETN (initial density 1 g cm™) as a function of
volume along the expansion adiabat. Squares are calculated from an ideal detonation code. The line
is the rational fit of order 2.

Table 1. Coefficients in numerator and denominator of equation (3.1) for the adiabatic gamma

coefficient I for the expansion of the detonation products of PETN at an initial density of 1.00 g cm™,
as determined by a linear least square criterion

) a, b,
0 1.1741 0.9624
1 0.7493 —0.4702
2 2.1383 1

Phil. Trans. R. Soc. Lond. A (1992)
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Table 2. Coefficients in numerator and denominator of equation (3.14) for the Gruneisen gamma
coefficient I, for the expansion of the detonation products of PETN at an initial density of 1.00 g cm™,
as determined by a linear least square criterion

7 ¢ d,
0 0.1084 0.4928
1 0.3027 1.2747
2 0.7105 1

RMS deviation is even smaller, 3 x 107°, which is only to be expected since the original
fitting is to a higher derivative.

Figure 4 is a plot of the Gruneisen gamma coefficient I’y as a function of the
reduced volume V/V,; along the expansion adiabat for the ideal detonation of PETN
at an initial density of 1 g em™. The points are again calculated from the IDeX ideal
detonation code, and the solid line is the rational approximation for N = 2, with
coefficients given in table 2, and a rus deviation of 0.004. The temperature 7" along
the adiabat can then be calculated from (3.15), and a plot of the result looks very
similar to figure 2 for the pressure, and will therefore not be presented. The rMS
deviation for the fit with N =2 is 2 x 107,

5. Comparison with other adiabatic equations

The two adiabatic equations in common use are the very simple polytropic (perfect
gas) equation mentioned in §2, and the JWL equation (Lee ef al. 1968), which has the

form
P = (K/VVia)+ P e V"1t P,e VIV, (5.1)

and contains five constants in addition to v,4. The first term is that for a perfect gas,
and the two exponential terms, which dominate near the CJ state, describe
departures from ideal behaviour. The integrated form of the JWL equation (Lee
et al. 1968) implies that the Gruneisen gamma coefficient I'; is a constant equal to
via— 1, which as can be seen from figure 4 is a poor approximation.

The JWL equation has received recent support from Cooper (1989), who has
suggested from empirical evidence a two-piece common reduced form for the pressure
as a function of particle velocity, which Lambourn (1989) has shown implies an
adiabatic equation very similar to the JWL but with only one exponential term.

For comparison, the rational form for I'g with N = 2 leads to the pressure equation
(3.12) which may be written

_ K E aq E 2]
P= Vm(1 + V) (1+ V) . (5.2)

Both (5.1) and (5.2) have four parameters in their reduced forms, but the striking
advantage of (5.2) is that the parameters can be obtained by linear algebra from
calculated or experimental values of the adiabatic gamma coefficient I's. By
contrast, the JWL expression for I'y is complicated and involves the parameters
nonlinearly. This gives rise to the difficulty that solutions for the parameters are not
unique, and may only correspond to local minima. Fits easily lead to double maxima
in I'g of doubtful physical significance, which have been much discussed, but
certainly do not oceur in the adiabats of single substances. If a satisfactory fit cannot

Phil. Trans. R. Soc. Lond. A (1992)
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352 W. Byers Brown

be obtained with four parameters, (5.2) is easily extended to a larger number, which
can be easily calculated. By contrast, the extension of (5.1) gravely increases the
difficulty of finding the best parameters.

A thermodynamic argument in favour of (5.2) and against (5.1) is that for a
slightly imperfect gas, whose deviations from perfect behaviour can be adequately
described by including the second virial coefficient B(7') in the equation of state, the
adiabatic gamma has the form

Ig =y +plyB+2y(y—1)THE +(y—1)*T*B"1+ 0(p?), (5.3)

where the primes denote differentiation with respect to 7" and y = y,4. Since 7 is
roughly proportional to p?~! along the adiabat, and B(7') can be expanded as a power
series in 1/7" beginning with a constant, I'g begins with a term linear in p. Now (3.1)
or (3.5) can clearly be expanded in powers of the density p, but the corresponding
expression for the JWL equation has essential singularities as a function of p at
p =0, and can not be so expanded. It is therefore inconsistent with the well
established virial expansion of statistical mechanics.

6. Conclusions

A simpler, accurate rational alternative to the JWL equation for describing the
adiabatic expansion of detonation fluid has been presented. It is particularly suitable
for fitting to the calculated results from ideal detonation codes for use in
hydrodynamic computations. When phase changes occur causing discontinuities in
derivatives, it should be possible to use matched piece-wise fits, and the method
should also be capable of extrapolation to the vicinity of a given adiabat and to the
supracompression region.

The next major step is to generalize the equation to cover reactive adiabats by
introducing an extent of reaction parameter A.

I am grateful to Dr Martin Braithwaite of ICI Explosives Group Technical Centre, Ardeer, for
discussions and for expansion adiabat data computed by means of the IDeX ideal detonation code.
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Discussion

B. D. LaMBoURN (AWE, Aldermaston, U.K.). (a) I believe the JWL equation of state
adiabatic gamma does have acceptable behaviour as volume tends to infinity; in fact
I'y > 1+w. (b) All the experimental data from the U.K., U.S.A. and France shows
that when detonation products are expanded into compressed gases from a one-
dimensional detonation wave, the CJ adiabat dips below the constant Iy adiabat,
implying that dfg/dv|,_y > 0. This behaviour is matched by a JWL double
exponential form or a single]exponential form for the pressure-volume relation along
the adiabat, but not by the THEOSTAR/IDeX predictions.

W. Byers Brown. (a) As I show in my paper, although the adiabatic gamma
coefficient, I, for the JWL equation goes to the correct limit y;; (1 = w in the usual
notation) it does not approach this value in the way required by statistical
thermodynamics. The virial expansion requires that (in my notation)

lim (Iy—1v,4)V is non-zero,

V <o
where the value involves the second virial coefficient, as shown in equation (5.3) of
the text. On the other hand, the JWL equation predicts that this limit vanishes, and

indeed that
lim (Ig—7yq) V=0 (all n).

V-

(b) The concern is because the plot of I'y against volume in figure 1, calculated from
the IDeX ideal detonation code based on my THEOSTAR equation of state (Byers
Brown 1987), does not exhibit a maximum. However, as stated, this plot is for PETN
at a loading density of 1.00 g cm™®. At the maximum loading density of 1.77 g cm™®
the corresponding plot does indeed exhibit a maximum, but it also exhibits a
discontinuity in slope due to the solid carbon in the detonation products. I did not
want to use this more complicated case to illustrate the rational approximant for I,
because it requires a two-piece fit. However, there is no problem in principle or
practice in constructing such a fit.
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